3.88 \(\int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx\)

Optimal. Leaf size=77 \[ \frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{10 b}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}} \]

[Out]

3/10*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticE(cos(a+1/4*Pi+b*x),2^(1/2))/b+1/5*sin(b*x+a)^2/b/s
in(2*b*x+2*a)^(5/2)-3/10*cos(2*b*x+2*a)/b/sin(2*b*x+2*a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {4296, 2636, 2639} \[ \frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{10 b}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^2/Sin[2*a + 2*b*x]^(7/2),x]

[Out]

(-3*EllipticE[a - Pi/4 + b*x, 2])/(10*b) + Sin[a + b*x]^2/(5*b*Sin[2*a + 2*b*x]^(5/2)) - (3*Cos[2*a + 2*b*x])/
(10*b*Sqrt[Sin[2*a + 2*b*x]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4296

Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> -Simp[((e*Sin[a +
b*x])^m*(g*Sin[c + d*x])^(p + 1))/(2*b*g*(p + 1)), x] + Dist[(e^2*(m + 2*p + 2))/(4*g^2*(p + 1)), Int[(e*Sin[a
 + b*x])^(m - 2)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0] && EqQ[
d/b, 2] &&  !IntegerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + 2*p + 2, 0] && (LtQ[p, -2] || EqQ[m, 2]) && Int
egersQ[2*m, 2*p]

Rubi steps

\begin {align*} \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx &=\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}+\frac {3}{10} \int \frac {1}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx\\ &=\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}}-\frac {3}{10} \int \sqrt {\sin (2 a+2 b x)} \, dx\\ &=-\frac {3 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{10 b}+\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.81, size = 66, normalized size = 0.86 \[ -\frac {12 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )+\frac {4 \sin ^2(a+b x) (6 \cos (2 (a+b x))+3 \cos (4 (a+b x))+1)}{\sin ^{\frac {5}{2}}(2 (a+b x))}}{40 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^2/Sin[2*a + 2*b*x]^(7/2),x]

[Out]

-1/40*(12*EllipticE[a - Pi/4 + b*x, 2] + (4*(1 + 6*Cos[2*(a + b*x)] + 3*Cos[4*(a + b*x)])*Sin[a + b*x]^2)/Sin[
2*(a + b*x)]^(5/2))/b

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (\cos \left (b x + a\right )^{2} - 1\right )} \sqrt {\sin \left (2 \, b x + 2 \, a\right )}}{\cos \left (2 \, b x + 2 \, a\right )^{4} - 2 \, \cos \left (2 \, b x + 2 \, a\right )^{2} + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="fricas")

[Out]

integral(-(cos(b*x + a)^2 - 1)*sqrt(sin(2*b*x + 2*a))/(cos(2*b*x + 2*a)^4 - 2*cos(2*b*x + 2*a)^2 + 1), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F(-1)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{2}\left (b x +a \right )}{\sin \left (2 b x +2 a \right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x)

[Out]

int(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (b x + a\right )^{2}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="maxima")

[Out]

integrate(sin(b*x + a)^2/sin(2*b*x + 2*a)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\sin \left (a+b\,x\right )}^2}{{\sin \left (2\,a+2\,b\,x\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)^2/sin(2*a + 2*b*x)^(7/2),x)

[Out]

int(sin(a + b*x)^2/sin(2*a + 2*b*x)^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**2/sin(2*b*x+2*a)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________